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This work presents a theoretical analysis of image formation in a scanning

transmission electron microscope equipped with electron detectors in a plane

conjugate to the specimen. This optical geometry encompasses both the three-

dimensional imaging technique of scanning confocal electron microscopy

(SCEM) and a recently developed atomic resolution imaging technique coined

real-space scanning transmission electron microscopy (R-STEM). Image

formation in this geometry is considered from the viewpoints of both wave

optics and geometric optics, and the validity of the latter is analysed by means

of Wigner distributions. Relevant conditions for the validity of a geometric

interpretation of image formation are provided. For R-STEM, where a large

detector is used, it is demonstrated that a geometric optics description of image

formation provides an accurate approximation to wave optics, and that this

description offers distinct advantages for interpretation and numerical

implementation. The resulting description of R-STEM is also demonstrated to

be in good agreement with experiment. For SCEM, it is emphasized that a

geometric optics description of image formation is valid provided that higher-

order aberrations can be ignored and the detector size is large enough to

average out diffraction from the angle-limiting aperture.

1. Introduction

The last decade has witnessed several significant advances in

transmission electron microscope instrumentation. Most

notable of these advances is the advent of commercially

available multipole electron-optical elements which compen-

sate the inherent spherical aberration of conventional electron

lenses (Haider et al., 1998; Krivanek et al., 1999). Such ‘aber-

ration correctors’ can be fitted to the objective postfield and/or

the objective prefield of a transmission electron microscope,

giving rise to significantly improved resolution in fixed-beam

imaging techniques and scanning transmission electron

microscopy (STEM) imaging techniques, respectively. Instru-

ments equipped with both prefield and postfield aberration

correctors, coined ‘double-aberration-corrected’ instruments,

are now available. In addition to the improvement of existing

imaging techniques, such instruments afford the exploration of

new, previously unfeasible or restricted, optical geometries

capable of accessing new information about the specimen.

Examples include the three-dimensional imaging technique of

scanning confocal electron microscopy (SCEM) (Frigo et al.,

2002; Nellist et al., 2006; Takeguchi et al., 2008) and, very

recently, probe imaging (Etheridge et al., 2011) and real-space

STEM (R-STEM) imaging (Etheridge et al., 2011; Lazar et al.,

2011).

From a theoretical perspective, new optical geometries

often entail new challenges in terms of image simulation and

interpretation. In the present work, we consider image

formation in a STEM geometry with the electron detector

placed in a plane conjugate to the object (as distinct from the

diffraction plane used in conventional STEM). This geometry

includes both SCEM and R-STEM, the former employing a

small axial disc detector, and the latter employing large axial

disc and large annular detectors. The latter technique, in

particular, is still in its infancy and remains to be fully

explored. The technique has been demonstrated (Lazar et al.,

2011) to give rise to incoherent atomic resolution images in a

manner similar to conventional high-angle annular dark-field

(ADF) STEM (Pennycook & Boatner, 1988; Loane et al.,

1992; Nellist & Pennycook, 2000) and it has been recently

utilized in probe imaging experiments (Etheridge et al., 2011)

to provide a reference image for locating the probe position.

One of the main developments of the present work is a

mathematical description of the R-STEM imaging mechanism,
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thus providing a more solid foundation for image interpreta-

tion and future developments and applications of the tech-

nique. As will be demonstrated, the R-STEM imaging

mechanism provides a rather beautiful example of how, under

appropriate circumstances, a wave optics (or quantum

mechanical) theory of image formation reduces to a geometric

optics (or classical) one. In a practical sense, the geometric

optics approximation also offers clear advantages in terms of

interpretation and numerical implementation. (To avoid any

potential confusion, we emphasize here that the considera-

tions of wave versus geometric optics are applied to the image

formation and detection processes, and that electron scat-

tering by the specimen is always treated quantum mechani-

cally.) Although for reasons that are different to the R-STEM

case, the geometric optics approximation is shown to be

applicable to aberration-corrected SCEM provided that the

detector is large enough to average out diffraction from the

angle-limiting aperture. The theoretical analysis given here

provides a formal reconciliation of wave and geometric optics

interpretations of SCEM found in recent literature (Mitsuishi

et al., 2010; Wang et al., 2011).

The layout of this article is as follows. x2 provides a

description of the relevant optical configurations. x3 presents

a wave optics formulation of STEM imaging using object-

conjugate detectors and discusses the difficulties associated

with a numerical implementation for R-STEM. In x4, a more

tractable approach to R-STEM is presented based on

geometric optics. This approach is compared with the wave

optics approach and experiment, and some aspects of the

experimental setup required for R-STEM are discussed. x5

examines the formal relationship between the wave and

geometric optics descriptions of STEM imaging with

object-conjugate detectors, and discusses the requirements

for the validity of the geometric optics approximation in

relation to both R-STEM and SCEM. Conclusions are

presented in x6.

2. Electron-optical geometry

Fig. 1 depicts the experimental geometry considered in the

present work. The electron-optical configuration is a scanning

confocal geometry: the electron-transparent specimen resides

in a plane which is simultaneously (i) the image plane of the

objective prefield with respect to the electron source, and (ii)

the object plane of the objective postfield with respect to the

image plane. Hence the focused electron beam, which is raster-

scanned across the specimen by the upper beam deflectors, is

maintained in focus at the image plane. An electron detector is

situated in the image plane. For SCEM, the detector is a small

axial disc, and for R-STEM it is a large axial disc or a large

annular detector (the terms ‘small’ and ‘large’ will be qualified

below). As the beam is scanned across the specimen its posi-

tion on the detector is kept stationary. In some SCEM

experiments this has been achieved by actually translating the

specimen instead of raster-scanning the beam, whereas in the

recent R-STEM experiments this was achieved by an appro-

priate use of upper and lower beam deflectors. The detector

output is synchronized with the scanning beam, so that the

detector signal as a function of the beam position on the

specimen constitutes the final image. For SCEM, a crucial

additional step is to acquire images for different heights of the

specimen with respect to the confocal plane, enabling the

extraction of three-dimensional information about the

specimen.

The relative size and geometry of the electron detector are,

among other important factors, crucial in determining the

nature of the final image. For SCEM, the detector is ideally a

pinhole in order to maximize depth sensitivity (signal-to-noise

requirements aside). In recent aberration-corrected SCEM

experiments (Wang et al., 2011) the detector size was, after

scaling to the relevant magnification, a few tenths of a nano-

metre. For R-STEM, the generation of incoherent atomic

resolution images requires that the detector is significantly

larger than the transverse extent of the ideal, that is, aberra-

tion-free, image-plane intensity. In recent R-STEM experi-

ments (Etheridge et al., 2011; Lazar et al., 2011) the dimensions

of the detectors, scaled to the relevant magnification, ranged

from several nanometres up to several thousand nanometres.

Aberrations introduced by the objective postfield can

significantly affect the image-plane intensity. In SCEM, the
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Figure 1
STEM imaging with object-conjugate detectors. In SCEM (a), a small
axial detector has the effect of excluding electrons scattered by the
specimen (represented by dashed rays) when the specimen is moved out
of the confocal plane, giving rise to depth sensitivity; an aperture is
employed in the diffraction plane to circumvent the higher-order
postfield aberrations experienced by electrons scattered by the specimen
to large angles. In R-STEM (b), electrons scattered to large angles
experience strong postfield aberrations, resulting in a significant
displacement of these electrons from the ideal image point; these
electrons are collected by the large annular detector.



effects of higher-order postfield aberrations are detrimental,

and they can be circumvented by employing an angle-limiting

aperture in the diffraction plane.

In R-STEM, the higher-order postfield aberrations are, in

fact, crucial in determining the image contrast. This has been

demonstrated by a comparison of experimental images taken

with and without angle-limiting apertures in the diffraction

plane. Hence, apart from the usual factors which must be

included in a theory of conventional STEM imaging (i.e.

descriptions of the electron probe, scattering of this probe by

the specimen and the detection of intensity), a theory of

R-STEM imaging must also incorporate the effects of higher-

order postfield aberrations. In the present work, the incor-

poration of these aberrations is presented using both wave

optics and geometric optics. As will be shown, in the case of

R-STEM the rigour of wave optics is counterbalanced by

computational challenges in its implementation. A geometric

optics approach, on the other hand, provides both sufficient

accuracy and the computational feasibility necessary for image

simulation.

3. Wave optics theory

We will initially outline how quantum mechanics is used to

calculate electron scattering by the specimen in the STEM

geometry. This step will be assumed in both the wave and

geometric optics approaches to image formation presented

below. Various methods exist for calculating the relevant

electron scattering. For example, multislice (Goodman &

Moodie, 1974; Kirkland et al., 1987; Ishizuka, 2002; Stadel-

mann, 2004) and Bloch-state (Allen et al., 2003; Findlay et al.,

2003; Rossouw et al., 2003; Stadelmann, 2004) approaches are

common. For definiteness, we summarize these approaches

below. We use a ‘crystallographic convention’ for plane waves

and Fourier transformations, where the magnitude of the

incident electron’s total wavevector is equal to 1=�, where

� is the wavelength. We use bold symbols to denote two-

dimensional vectors transverse to the optic axis. Points in the

specimen and image planes will generally be denoted by x,

while points in the diffraction plane will generally be denoted

by a reciprocal-space vector k. The actual (real-space) position

in the diffraction plane of a lens is related to k by �f k, where f

is the lens focal length.

Using a paraxial approximation to Schrödinger quantum

mechanics, the wavefunction at a point k in the diffraction

plane arising from a focused electron probe positioned at the

point x0 at the specimen entrance surface can be written in the

form (Dwyer, 2010)

~  ðk; x0Þ ¼
R

d2k0 iGðk; k0Þ
~  0ðk0Þ expð�2�ik0 � x0Þ; ð1Þ

where ~  0ðkÞ is the electron wavefunction in the plane of the

probe-forming aperture corresponding to a probe centred at

the origin of the entrance surface, and Gðk; k0Þ is the

momentum-space propagator which incorporates any elastic

scattering caused by the specimen. Thermal diffuse scattering,

which is important in the present context since it dominates

at large scattering angles, is accommodated here using the

frozen-phonon approach (Loane et al., 1991; Kirkland, 2010).

Other forms of inelastic scattering are not considered in the

present work. The effects of objective prefield aberrations are

implicitly incorporated into ~  0. In the present work, knowl-

edge of the wavefunction in either the specimen exit surface or

the diffraction plane (the two being related by Fourier trans-

formation up to an unimportant phase factor) will be assumed

when necessary.

In the case of conventional STEM imaging, which uses a

detector in the diffraction plane, the STEM image intensity for

probe position x0 is computed as an integral of j ~  ðk; x0Þj
2 over

points k lying on the detector. Such approaches to STEM

image simulations are now well established and routinely

carried out on desktop computers (Kirkland, 2010; Dwyer,

2010).

For the present optical geometry, we must compute the

intensity on the detector in the image plane. To this end, a

wave optics approach to image formation seems a natural

choice, especially from the viewpoint of workers familiar with

existing theories of atomic resolution transmission electron

microscopy (TEM) and STEM imaging. In this approach, the

effects of objective postfield aberrations are incorporated as

phase shifts in the diffraction plane (assuming validity of the

isoplanatic approximation), and the wavefunction in the image

plane is computed explicitly as an intermediate step in

calculating the detected intensity. The wavefunction at a point

x in the image plane can be written in the form

 iðx; x0Þ ¼
R

d2k ~  ðk; x0Þ exp½�2�i�ðkÞ� exp½2�ik � ðx0 þ xÞ�

¼
R

d2k d2k0 iGðk; k0Þ
~  0ðk0Þ

� exp½�2�i�ðkÞ� expð2�ik � xÞ exp½2�iðk� k0Þ � x0�;

ð2Þ

where �2��ðkÞ and 2�k � x0 are the phase shifts due to

postfield aberrations and descan, respectively. Introducing a

detector function DðxÞ which equals unity (zero) for points x

lying on (off) the detector, the final image intensity for probe

position x0 can be written in the form

Iðx0Þ ¼
R

d2x DðxÞj iðx; x0Þj
2; ð3Þ

where  iðx; x0Þ is computed according to equation (2). Since

equation (3) makes no assumptions regarding the detector

geometry, it is applicable to both SCEM and R-STEM.

A numerical implementation of the above formulation

involves essentially only one additional step with respect to

conventional STEM, namely, the incorporation of postfield

aberrations. However, to ensure accuracy in the calculation,

the aberration function must be adequately sampled at all

points k in the diffraction plane for which ~  ðk; x0Þ has an

appreciable value. In the case of SCEM, where an angle-

limiting aperture is employed, the effect of higher-order

aberrations is not dominant and no difficulty arises. In the case

of R-STEM, however, no such aperture is employed, so that

electrons scattered to large angles can contribute to the image

intensity. In this case, the higher-order postfield aberrations

are crucial in determining how the intensity is distributed

research papers

198 C. Dwyer et al. � Image formation in STEM Acta Cryst. (2012). A68, 196–207



across the detector. Achieving sufficient sampling of the

aberration function at all relevant points of the diffraction

plane then presents a difficulty.

To explore this difficulty in more detail, we adopt a common

aberration notation (Uhlemann & Haider, 1998) and consider

the (negative of the) phase shift associated with the nth-order

round term (n ¼ odd) in the aberration function:

’nðkÞ ¼
2�

nþ 1
Cn�

n
jkjnþ1: ð4Þ

The variation of this phase shift with respect to a small

increase in the length of k is, to leading order,

�’n ’
@’n

@k
�k ¼ 2�Cn�

n
jkjnj�kj: ð5Þ

For a sampling scheme consistent with the use of the fast

Fourier transform (Press et al., 2002), we have that j�kj ¼ 1=a,

where a is the size of the supercell used (implicitly or expli-

citly) in the simulation. We also have that the maximum

scattering vector is jkmaxj ¼ N=2a, where N is the number of

pixels along a. Hence the following condition is obtained for

sampling the aberration function above the Nyquist limit at

kmax:

�’n ¼
2�Cn�

nðN=2aÞn

a
¼

2�Cn�
nNn

2nanþ1
<�: ð6Þ

Rearranging, the lower limit on the supercell size is given by

a> 2Cn�
n N

2a

� �n

¼ 2Cn�
n
max; ð7Þ

where �max is the maximum scattering angle in the calculation.

(As a point of later relevance, this lower limit on the supercell

size is entirely consistent with the displacement of a geometric

ray from the ideal image point, which is given by Cn�
n). To see

the implications of the above, consider a calculation involving

a fifth-order spherical aberration coefficient C5 = 10 mm [a

value representative of higher-order aberrations in a third-

order spherical aberration C3-corrected objective postfield

(Chang et al., 2006)] and a maximum scattering angle

�max ’ 100 mrad (a value representative of that required to

encompass the large-angle scattering in a transmission elec-

tron microscope). Substituting these values into equation (7)

gives a >� 200 nm, which is approximately 100 times larger

than supercells typically used for simulations of conventional

atomic resolution STEM images. The implied array size N2,

where N ¼ 2ajkmaxj, is then 104 times larger than that typically

used and will likely exhaust the memory capacity of current

desktop computers. For the case of a C3-dominated postfield,

assuming C3 ¼ 1 mm, we obtain that a >� 2000 nm, so that the

implied array size is even larger.

From the above considerations it is evident that a direct

and, what will appear in retrospect, naive application of wave

optics to incorporate the higher-order postfield aberrations

in R-STEM places excessive demands on computational

resources.

4. Geometric optics theory of R-STEM

As an alternative to computing the R-STEM image intensity

via explicit calculation of the image wavefunction, geometric

optics can be used to compute how the intensity in the image

plane is displaced with respect to the ideal (aberration-free)

image. Hence, from such computations, the intensity lying on

the detector can be inferred. This section provides a brief

derivation of this geometric optics approach, with many steps

omitted for ease of reading. The validity of such an approach is

ensured provided that the detector constitutes a large portion

of the image plane, so that interference effects are averaged

out. Questions of validity are considered in detail in x5, where

a more rigorous derivation of the geometric optics description

is presented.

Under the isoplanatic approximation, the aberration-

induced displacement of a geometric ray from its ideal image

point depends only on the angle at which the ray leaves the

object plane. If the spatial extent of the ideal image is small in

comparison to the aberration-induced displacements, then the

spatial extent of the ideal image can be neglected, and the

position of the ray in the image plane is approximately equal

to the ray displacement itself (see Fig. 2). Ignoring the possi-

bility of image inversion, the displacement of a ray leaving the

object plane in the direction corresponding to k is given by

xðkÞ ¼ rrr�ðkÞ; ð8Þ

where the gradient is taken with respect to k. Hence, under the

stated assumptions, the position of a ray in the image plane is

xðkÞ. The appropriate weight of each ray is given by the

intensity of the wavefield in the diffraction plane multiplied by

the inverse of the Jacobian determinant. (Inclusion of the

Jacobian determinant ensures that the total intensity is

conserved from one optical plane to the next). Hence, for a

probe at position x0, the image-plane intensity can be written

in the form
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Figure 2
The aberration-induced displacement of a ray that leaves the object plane
in the direction of � (or, equivalently, the direction corresponding to k). If
the spatial extent of the aberration-free image is small (that is, if jxj can be
regarded as small), then the position of the ray in the image plane will be
approximately equal to the displacement rrr�ðkÞ.



Iðx; x0Þ ’ jJj
�1
j ~  ðkðxÞ; x0Þj

2; ð9Þ

where kðxÞ is the inverse of the function xðkÞ and jJj is the

determinant of the Jacobian matrix associated with the

transformation xðkÞ : k! x. Substituting equation (9) into

equation (3), the R-STEM image intensity can be written in

the form

IR-STEMðx0Þ ’
R

d2x DðxÞjJj�1
j ~  ðkðxÞ; x0Þj

2: ð10Þ

While equation (10) may appear satisfactory, it suffers from

severe complications arising from any multivaluedness of kðxÞ,

e.g. when focal points or caustics are present in the image

plane. However, these complications can be eliminated by

making a change of integration variable from x to k, in which

case the Jacobian determinant cancels out, and a satisfactory

expression for the R-STEM image intensity is obtained in the

form

IR-STEMðx0Þ ’
R

d2k DðxðkÞÞj ~  ðk; x0Þj
2: ð11Þ

Equation (11) provides a very convenient description of

R-STEM imaging: the function DðxðkÞÞ can be interpreted as

describing an effective detector operating in the diffraction

plane. With this interpretation, equation (11) is formally

equivalent to that for conventional STEM imaging, except

that the shape of the effective detector is determined not

only by the detector geometry, but also by the objective

postfield aberrations. Hence the effects of postfield aberra-

tions constitute a crucial difference between the conventional

STEM and R-STEM imaging modes.

In addition to its simple interpretation, equation (11) also

offers a distinct advantage in terms of image simulations: given

the aberration coefficients of the objective postfield, the

effective detector function DðxðkÞÞ is easily computed. Then

all that is required to compute the R-STEM intensity for a

given probe position is the scattered intensity in the diffraction

plane, which is readily obtained using a multislice or Bloch-

state approach to conventional STEM images. In this manner,

the simulation of R-STEM images poses no greater difficulty

than the simulation of conventional STEM images.

4.1. Comparison of geometric theory of R-STEM and
experiment

As an initial test of the geometric optics theory of R-STEM,

Fig. 3 compares experimental and simulated R-STEM images

of ½001� SrTiO3. This specimen was chosen because it contains

both light (oxygen) and moderately heavy (strontium) atoms.

The experimental images were acquired using a Titan3 80–300

microscope (FEI Co.) equipped with objective prefield and

postfield spherical aberration correctors (CEOS GmbH) and

operating at 200 kV. The microscope was equipped with a

descan system that maintains a stationary beam in the image

plane as the probe is raster-scanned across the specimen. The

probe convergence semi-angle was approximately 20.5 mrad,

and the images were acquired using a disc image-plane

detector of radius 3.9 nm, and an annular image-plane

detector with inner and outer radii of 15 and 93 nm (these

detectors were operated simultaneously). Convergent-beam

electron diffraction was used to measure the approximate

thickness of the sample to an accuracy of about �3 nm.

The simulations in Fig. 3(a) were performed using the

geometric optics theory for parameters matching the

experimental conditions. The simulations assume an aberra-

tion-free objective prefield, and objective postfield aberrations

of C5 ¼ 6:8 mm, jA5j ¼ 3:1 mm and C7 ¼ 197 mm (values

representative of higher-order aberrations in a C3-corrected

objective postfield). The shapes of the effective detectors

under these conditions are shown in Fig. 3(b). The electron

research papers

200 C. Dwyer et al. � Image formation in STEM Acta Cryst. (2012). A68, 196–207

Figure 3
(a) Comparison of experimental disc and annular R-STEM images of
½001� SrTiO3 and simulations based on the geometric optics theory (inset
of each image). The approximate experimental thickness of the sample is
indicated on the left. All images are displayed such that the minimum and
maximum intensities correspond to black and white, respectively. (b) The
shape of the effective disc and annular detectors operating in the
diffraction plane. The apparent hexagonal shapes are caused by the A5

aberration. Crosses mark the centre of the diffraction plane.



scattering portion of the simulations was performed using a

modified frozen-phonon multislice code adapted for speed

to run on the general-purpose graphics processing unit

(GPGPU) (Dwyer, 2010). On account of the interpretation of

R-STEM in terms of an effective detector, the important

effects that arise in conventional STEM from the partial

spatial coherence of the incident electron beam (source size

effects) (Dwyer et al., 2008, 2010; LeBeau et al., 2008; Maun-

ders et al., 2011) are manifest in R-STEM in the same manner.

These effects have been included qualitatively here by

convoluting with a Gaussian function of 0.1 nm full width at

half-maximum (FWHM). The effects of partial temporal

coherence (prefield focal fluctuations) are relatively unim-

portant (Dwyer et al., 2010) and have been ignored. The

supercell used for the electron scattering portion of the

simulations was 3.1� 3.1 nm (8� 8 unit cells of ½001� SrTiO3),

sampled using a 512 � 512 array. The same supercell was used

for the imaging portion of the simulation.

From Fig. 3(a) it is seen that the experimental disc R-STEM

images exhibit all the qualities of an incoherent bright-field

image, that is, intensity minima located at the positions of

atomic columns, with deeper minima located at the sites of

columns with greater atomic number. In an analogous manner,

the annular R-STEM images exhibit all the qualities of an

incoherent dark-field image, that is, a conventional ADF

image. The image contrast in disc R-STEM is approximately

complementary to that in annular R-STEM. These observa-

tions are consistent with the shapes of the effective detectors

operating in the diffraction plane (Fig. 3b): the large effective

disc detector approximately fills the hole in the effective

annular detector, giving rise to an incoherent bright-field

image. The contrast of the experimental images shows

remarkably little change over the thickness range indicated.

In fact, the only change with respect to thickness that is

discernible in the experimental images in Fig. 3(a) occurs

between those taken at thicknesses 16 and 23 nm, where the

contrast of the Ti—O columns appears slightly fainter in the

thinner specimen. Nonetheless, these subtle changes in

contrast are reproduced by the simulations and can be

attributed to electron channelling. Although it is not apparent

from the greyscale of the images in Fig. 3(a), the overall

intensities in the experimental disc and annular R-STEM

images exhibit an obvious decrease and increase with thick-

ness, respectively, as is consistent with the calculations

discussed in x4.2. Hence, we find that the overall qualitative

agreement between experimental and simulated images is very

good. This agreement supplements that reported earlier

(Lazar et al., 2011) for images of LaB6 and provides substantial

confidence in the geometric optics theory of R-STEM image

formation described above.

We conclude this subsection with some remarks regarding

the experimental setup required for R-STEM. The experi-

mental images reported here and in our earlier works

(Etheridge et al., 2011; Lazar et al., 2011) were acquired using

instruments equipped with both an aberration-corrected

objective prefield and an aberration-corrected postfield. The

correction of prefield aberrations enables the formation of a

significantly smaller electron probe, leading directly to an

increase in the resolution of R-STEM images. On the other

hand, correction of the postfield aberrations does not influ-

ence the resolution of the images and is not a requirement for

the acquisition of R-STEM images. The postfield aberrations

do, however, influence the geometry of the effective detector

operating in the diffraction plane, as discussed above. To

examine this influence further, Fig. 4 shows the correspon-

dence between the scattering angle and the image-plane

displacement for sets of aberration coefficients that are

representative of C3-dominated and C3-corrected objective

postfields. While this figure ignores non-round aberrations, it

is nonetheless useful for determining the approximate scat-

tering angles applicable to a particular R-STEM experiment.

For example, the upper solid curve applies to the instruments

used here and in our previous works (Etheridge et al., 2011;

Lazar et al., 2011). On these instruments the (effective) image-

plane displacement corresponding to the inner edge of the

annular detector can be varied from 15 to 2300 nm, so that the

inner collection angle can be varied from approximately 70 to

170 mrad. On similar instruments without a postfield aberra-

tion corrector, to which the lower solid curve in Fig. 4 applies,

the inner collection angle can be varied from approximately 30

to 120 mrad. Since the latter range, with its smaller inner

angles, enables an increased signal in the annular images, the

presence of significant C3 aberration would be beneficial in

this sense.

4.2. Comparison of wave and geometric theories of R-STEM

As a quantitative comparison of the wave and geometric

approaches to R-STEM in a practical scenario, Fig. 5 shows a

comparison of intensities in line profiles across the ½110�

direction of the ½001�-oriented SrTiO3 unit cell for selected

thicknesses up to 80 nm. These simulations assumed a beam

energy of 300 keV and convergence semi-angle of 17 mrad. In

order to enable a tractable wave optics calculation, the outer

radius of the annular detector was reduced to 25 nm in both
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Figure 4
The scattering angles corresponding to image-plane displacements for
sets of aberration coefficients applicable to C3-dominated and C3-
corrected objective postfields. Aberration coefficients other than those
indicated are set to zero. The graph applies to all beam energies.



calculations. The supercell used for the imaging portion of the

wave optics simulation was 50� 50 nm (128� 128 unit cells of

½001� SrTiO3), sampled using a 8192 � 8192 array. All other

parameters are essentially unchanged from those in Fig. 3. The

results in Fig. 5 confirm that the geometric optics approx-

imation is in excellent quantitative agreement with the wave

optics results, with a largest relative error of about 5% under

the stated conditions.

5. Analysis of the geometric optics limit

This section examines the formal relationship between the

wave and geometric optics descriptions of STEM imaging

using object-conjugate detectors. The geometric optics

description emerges as an appropriate limit to the wave optics

theory. Hence the benefit of the present considerations lies in

providing a clearer assessment of the validity of the geometric

optics description for R-STEM and SCEM. In addition, the

manner in which the wave optics theory reduces to the

geometric optics one constitutes an interesting and worthwhile

study in its own right.

We begin with the complete wave optics description, but

couched in a slightly different form which is more suited to

the present considerations. For clarity, it will be assumed

temporarily that the probe is centred at the origin of the

specimen entrance surface so that the probe position x0 can be

omitted (dependence on the probe position will be restored

later).

The intensity at a point x in the image plane is given by

j iðxÞj
2, where  i is the (aberrated) wavefunction in the image

plane. As described earlier,  i can be written as the inverse

Fourier transform of the wavefunction in the diffraction plane
~  multiplied by the aberration phase shift:

 iðxÞ ¼
R

d2k ~  ðkÞ exp½�2�i�ðkÞ� expð2�ik � xÞ: ð12Þ

Equation (12) can be interpreted as an overlap integral in

Fourier space involving the wavefunction ~  ðkÞ and a ‘conju-

gate’ wavefunction

~  
	

Dðk; xÞ ¼ exp½�2�i�ðkÞ� expð2�ik � xÞ; ð13Þ

which originates from a point x on the detector (Kainuma,

1955). As before, the detected intensity is given by integrating

over the detector in the image plane:

I ¼
R

d2x DðxÞ
R

d2k ~  
	

Dðk; xÞ ~  ðkÞ
��� ���2

¼
R

d2x DðxÞ
R

d2k d2k0 ~  Dðk; xÞ ~  
	

ðkÞ ~  
	

Dðk
0; xÞ ~  ðk0Þ:

ð14Þ

The last equality is significant because it can be interpreted as

the overlap of two density matrices, one describing the pure

quantum state of the scattered electron probe and the other

describing the mixed quantum state associated with the

objective postfield and detector portion of the optical

geometry. The former will be called the ‘probe’ state, while the

latter will be called the ‘detector’ state.

For the present purposes, it is convenient to describe the

probe and detector states using a formalism that explicitly

accommodates mixed states. While the density matrix form-

alism is well known for this ability and has been used to

describe electron scattering in TEM (Schattschneider et al.,

1999; Verbeeck et al., 2009), here we use a formalism based on

Wigner distributions (Castano, 1989; Bastiaans, 1997; Torre,

2005), as it accommodates mixed states and allows a more

vivid analysis of the geometric optics limit (Berry, 1977). A

Wigner distribution Wðx; kÞ describes the state of a quantum

particle in terms of a position coordinate x and a wavevector

(or momentum) coordinate k, i.e. x and k taken together

denote a point in phase space. Essentially, the value of Wðx; kÞ

can be considered as the strength of a geometric ray at x

moving in direction k, but with the important caveats that (i)

physically realisable states consist of a distribution of such rays

consistent with the Heisenberg uncertainty principle, and (ii)

the strength of a given ray can be negative.

The Wigner distributions of the probe and detector states

can be written in the forms
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Figure 5
Quantitative comparison of wave (solid lines) and geometric optics
(dashed lines) simulations of (a) disc and (b) annular R-STEM images of
½001�-oriented SrTiO3. The intensities correspond to diagonal line traces
across the projected unit cell, with Sr at the centre. Data are shown for
sample thicknesses of 20, 40, 60 and 80 nm.



Wðx; kÞ ¼
R

d2k0 ~  
	

ðk� k0=2Þ ~  ðkþ k0=2Þ expð2�ik0 � xÞ;

ð15Þ

and

WDðx; kÞ ¼
R

d2x0Dðx0Þ
R

d2k0 ~  
	

Dðk� k0=2; x0Þ

� ~  Dðkþ k0=2; x0Þ expð2�ik0 � xÞ; ð16Þ

respectively. Here it is convenient to regard x and k as

specifying a geometric ray at the specimen exit surface. Hence

Wðx; kÞ specifies the distribution of geometric rays emanating

from the specimen exit surface, and WDðx; kÞ specifies how

these rays ‘couple’ to the detector via the objective postfield.

Note that WDðx; kÞ contains an incoherent summation over

points on the detector, consistent with the incoherent nature

of the detection process. A more explicit form for WDðx; kÞ is

obtained by using equation (13):

WDðx; kÞ ¼
R

d2k0 ~DDðk0Þ expf2�i½�ðkþ k0=2Þ � �ðk� k0=2Þ�g

� expð2�ik0 � xÞ; ð17Þ

where ~DDðkÞ is the Fourier transform of DðxÞ. In the present

language, the detected intensity is given by the overlap of the

probe and detector Wigner distributions:

Iðx0Þ ¼
R

d2x d2k WDðx; kÞWðx; k; x0Þ; ð18Þ

where the dependence on the probe position x0 has been

restored simply by noting that the probe state is a function of

the probe position.

We reiterate that the formulation contained in equation

(18) is a fully wave optical one. On the other hand, if WDðx; kÞ

is well approximated by a function that takes on values of

either 0 or 1 in certain regions of phase space, then a geometric

optics interpretation of equation (18) becomes valid. More

specifically, WDðx; kÞ ¼ 1 will correspond to a geometric ray

that emanates from the object plane, passes through the

objective postfield and strikes the detector; the strength of this

ray will be maintained along its path to the detector, that is,

the strength of this ray at the detector will still be Wðx; k; x0Þ.

In contrast, if WDðx; kÞ takes on values significantly different

from 0 or 1, and, in particular, if it takes on negative values,

then such a geometric interpretation of the image formation

process is lost.

The geometric optics limit of WDðx; kÞ can be obtained in a

relatively straightforward manner:

WDðx; kÞ ¼
R

d2k0 ~DDðk0Þ expf2�i½�ðkþ k0=2Þ � �ðk� k0=2Þ�g

� expð2�ik0 � xÞ;

’
R

d2k0 ~DDðk0Þ exp½2�ik0 � ðxþ xðkÞÞ�

¼ Dðxþ xðkÞÞ; ð19Þ

where the essential approximation has been to retain only

the first-order term in the following Taylor expansion of the

aberration phase shifts about k:

�ðkþ k0=2Þ � �ðk� k0=2Þ

¼ k0 � rrr�ðkÞ þ
1

3!

1

4
ðk0 � rrrÞ3�ðkÞ þ . . . ; ð20Þ

and then write xðkÞ instead of rrr�ðkÞ [see equation (8)].

[Strictly, this ‘first-order derivation’ of the geometric limit

should be replaced by a more rigorous derivation that uses a

so-called uniform approximation to the integral (Berry, 1977).

For our purposes, however, the above derivation is adequate.]

For future reference, there are two important scenarios

where the higher-order terms in equation (20) vanish and

equation (19) holds exactly without approximation, namely, (i)

when the aberration function contains only quadratic terms,

that is, C1 and A1 terms only, and (ii) the small wavelength

limit �! 0. As we shall see, equation (19) is also accurate in

the case of a sufficiently large detector.

5.1. Application to R-STEM

For R-STEM, we must include aberrations of higher order

than C1 and A1, and the wavelength must be regarded as finite.

In this case, the approximation contained in equation (19) is

valid only if the magnitude of the higher-order terms (i.e.

third-order or greater) in equation (20) is significantly less

than unity when ~DDðk0Þ has an appreciable value. We will then

have exp½2�i(higher-order terms)] ’ 1 in equation (19). To

obtain an explicit expression of this condition relevant to the

present optical geometry, we assume that d is a characteristic

dimension of the detector, so that the ‘central lobe’ of the

function ~DDðk0Þ has width� 2=d, and assume also that Cn is the

dominant higher-order aberration with n 
 3. Consideration

of the third-order term in equation (20) then leads to the

following condition for the validity of the geometric optics

approximation:

d�
nðn� 1Þ

24
Cn�

2�n
� 2

� �1=3

; ð21Þ

where � is the scattering angle. Equation (21) says that the

geometric optics approximation is valid for a certain minimum

detector size, and that the condition for geometric optics

becomes stricter as Cn, � or � increases. The minimum

detector size can be interpreted as that which completely

encapsulates the ‘spreading’ of a geometric ray caused by the

higher-order aberrations, in which case such spreading has no

influence on the detected intensity (see Fig. 6). It should be

noted that the condition in equation (21) is a weak condition,

in line with the known weak (i.e. ‘slow’) convergence to the

geometric (or classical) limit.

For definiteness in the R-STEM case, the ideal image

intensity is assumed to be centred at the origin of the image

plane. Additionally, we assume that the spatial extent of the

ideal image intensity is significantly smaller than the detector

geometry. In this case, if d is a characteristic dimension of the

detector, only those values of x for which jxj � d are impor-

tant in equation (18). Now, from equation (17) it can be

inferred that, since the function ~DDðkÞ has a width � 1=d,

WDðx; kÞ ’ WDð0; kÞ for jxj � d. Making this replacement in

equation (18), we obtain the following expression valid for a

large detector:
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IR-STEMðx0Þ ’
R

d2k WDð0; kÞ
R

d2x Wðx; k; x0Þ

¼
R

d2k WDð0; kÞIðk; x0Þ; ð22Þ

where Iðk; x0Þ is the intensity in the diffraction plane. Equa-

tion (22) can be evaluated using either wave or geometric

optics depending on whether WDð0; kÞ is taken from equation

(17) or equation (19), respectively. If evaluated using wave

optics, the real (but not necessarily positive) function WDð0; kÞ

can be regarded as the effective detector function operating in

the diffraction plane in the wave optics theory. To emphasize

the role of this function it will be denoted by DðkÞ. It is given

explicitly by the expression

DðkÞ ¼
R

d2k0 ~DDðk0Þ expf2�i½�ðkþ k0=2Þ � �ðk� k0=2Þ�g: ð23Þ

On the other hand, if evaluated according to geometric optics,

the function WDð0; kÞ is just the effective detector function
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Figure 6
The spreading of a geometric ray (bold line) caused by higher-order
aberrations of the objective postfield.

Figure 7
Comparison of wave optics (a)–(f) and geometric optics (g)–(i) effective detector functions for disc-shaped image-plane detectors of different diameters
(indicated on the left). Wave optics results are shown for wavelengths � ¼ 1:97 pm (a)–(c) and � ¼ 0:872 pm (d)–(f), corresponding to electron beam
energies of 300 keV and 1 MeV, respectively. All figures assume aberration coefficients of C5 ¼ 6:8 mm and jA5j ¼ 3:1 mm. The apparent hexagonal
shapes are caused by the A5 aberration. Crosses mark the centre of the diffraction plane. The intensity scale at the bottom applies to all subfigures.



DðxðkÞÞ introduced in x4, and equation (22) is then identical to

equation (11).

A comparison of the effective detector functions DðkÞ and

DðxðkÞÞ illuminates the validity of the geometric optics

approximation in R-STEM. Fig. 7 shows such a comparison for

disc-shaped image-plane detectors of different sizes and for

different electron wavelengths. The wave optics effective

detectors (Figs. 7a–7f) exhibit the characteristic ‘Airy form’

(Berry, 1977), oscillating in the geometrically allowed region

(indicating wave interference) and decaying exponentially in

the geometrically forbidden region. This behaviour is espe-

cially clear in Figs. 7(a) and 7(b), but it is also present, though

more difficult to discern, in Figs. 7(c)–7(f). In contrast, the

geometric optics effective detectors (Figs. 7g–7i) contain no

such oscillations because DðxðkÞÞ can only take on a value of 1

or 0, as discussed above. The results in Fig. 7 demonstrate

clearly how the oscillations in the wave optics effective

detector become smaller and more closely spaced with

increasing detector size, leading to better agreement with the

geometric optics result. From equation (23) this behaviour can

be understood as a narrowing of the function ~DDðkÞ, so that the

first-order Taylor expansion in equation (20) leading to the

geometric optics expression becomes a more accurate

approximation, as discussed above. A similar trend towards

geometric optics is observed in connection with the small

wavelength limit, as expected. In Fig. 7 it can also be seen that

the magnitude of the oscillations indicative of the breakdown

of geometric optics increases with scattering angle, in agree-

ment with the behaviour expected from equation (21).

The detector size corresponding to the transition from wave

to geometric optics, as seen in Fig. 7, can be predicted by

recognizing that, when the spatial extent of the ideal image

intensity is significantly smaller than the detector, equation

(21) need hold only for a restricted range of scattering angles.

From Fig. 7, it can be recognized that the largest important

scattering angle corresponds roughly to that of a geometric

ray which is displaced to the edge of the detector, i.e.

� ¼ ðd=2CnÞ
1=n. Substituting this value into equation (21), we

obtain, after some algebra,

d� 2
nðn� 1Þ

48

� �n=2

Cn�
n

" #1=ðnþ1Þ

: ð24Þ

Table 1 shows the value of the right-hand side of equation (24)

for aberration coefficients relevant to C3-dominated and C3-

corrected objective lenses. The row labelled ‘C5 ¼ 10 mm’ in

Table 1 is applicable to the first column in Fig. 7. Hence

equation (24) says that the geometric optics approximation

should hold for detectors significantly larger than about

0.06 nm, in adequate agreement with the first column in Fig. 7.

Notwithstanding the remarks above, it should be remem-

bered that the R-STEM intensity involves an integration over

the diffraction plane. Hence, even when DðkÞ contains

appreciable oscillations, the geometric optics approximation

may still provide sufficient accuracy, though this will depend

on whether or not the specific form of the scattered intensity

Iðk; x0Þ affords sufficient averaging over the oscillations.

Finally, in reference to Fig. 7, the assumption that the

detector geometry is larger than the extent of the ideal image

is, in a practical scenario, likely to break down for the 0.2 nm

detector (and possibly the 1.2 nm detector too). However, this

does not affect the present conclusions regarding the validity

of the geometric optics approximation in R-STEM because

the former assumption is independent of the geometric optics

approximation.

5.2. Application to SCEM

For SCEM, we assume that an angle-limiting aperture

circumvents higher-order aberrations. (If no aperture is used

then we must include higher-order aberrations and the

considerations of the previous section apply.) If we can neglect

higher-order aberrations on account of the aperture, then the

condition equation (21) is vacuous (since we can assume

Cn ’ 0 for n 
 3). However, diffraction from the aperture

limits the validity of a geometric interpretation of image

formation. To this end, the relevant Wigner distribution

involves that of a circular aperture, for which an approximate

closed form has been derived (Bastiaans & van de Mortel,

1996; Yang & Lang, 2005). Assuming the detector is a pinhole

centred on the optic axis, we can obtain a Wigner distribution

describing image formation in SCEM:

WAðx; kÞ ¼
R

d2k0 Aðk� k0=2ÞAðkþ k0=2Þ

� exp½2�ik0 � ðxþ xðkÞÞ�

’ OTFa=2ðkÞCTF2aðexxþexxðkÞÞ; ð25Þ

where AðkÞ is the transmission function for an aperture of

radius a, OTFaðkÞ is the well known (Goodman, 1968) inco-

herent optical transfer function,

OTFaðkÞ ¼
2

�
cos�1 jkj

2a
�
jkj

2a
1�

jkj

2a

� �2
" #1=2

8<:
9=; ð26Þ

and CTFaðxÞ is the well known (Goodman, 1968) coherent

transfer function in real space,

CTFaðxÞ ¼
aJ1ð2�ajxjÞ

jxj
: ð27Þ

In equation (25), exx denotes the scaled position vector

fða� jkj=aÞx; ½ða2 � jkj2Þ1=2=a�yg, where the x axis coincides

with k̂k. The form of the coherent transfer function implies that

a geometric ray originating from the object plane will be
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Table 1
The approximate lower bound on the detector size for the validity of the
geometric optics approximation in R-STEM, as given by equation (24),
for aberration coefficients representative of C3-dominated and C3-
corrected objective lenses.

A beam energy of 300 keV is assumed.

Aberration
Right-hand side of equation (24)

(nm)

C3 ¼ 1 mm 0:16
C5 ¼ 10 mm 0:063
C7 ¼ 100 mm 0:044



‘spread’ across the image plane as a consequence of diffraction

from the aperture. Moreover, the oscillatory nature of the

coherent transfer function means that the strength of the ray

will be reversed in some parts of the image plane. As discussed

above, this behaviour indicates the breakdown of the geo-

metric interpretation.

In contrast to such behaviour, an application of the small-

wavelength limit (Berry, 1977; Filippas & Makrakis, 2003) to

equation (25) yields the Boolean function

W�¼0
A ðx; bÞ ¼ lim

�!0

1

�2
WAðx; b=�Þ ¼ AðbÞ�ðxþ xðbÞÞ; ð28Þ

where b ¼ �k (the use of b in connection with the small-

wavelength limit avoids the implicit dependence on �
contained in k). Equation (28) implies simply that a geometric

ray will contribute to the final SCEM image if it passes

through the aperture and strikes the pinhole detector.

Reconciliation of geometric optics and SCEM can be

achieved by noting that, in reality, the detector size d is finite.

As was the case for R-STEM, a sufficiently large detector will

encapsulate the spreading of a geometric ray, which is now

caused by diffraction from the aperture. In a manner similar to

that described for R-STEM, we specify that the detector

should at least encapsulate the central lobe of the coherent

transfer function, leading to the condition

d�
�

2ð�max � �Þ
; ð�<�maxÞ; ð29Þ

with �max denoting the aperture semi-angle. Hence, if this

condition is satisfied, we can write, approximately,

WAðx; kÞ ’ AðkÞDðxþ xðkÞÞ; ð30Þ

which has the same interpretation as equation (28) except that

the detector size is now finite. From equation (29) we infer that

a geometric interpretation of image formation in SCEM can

only apply to the subset of geometric rays that do not pass

‘too close’ to the edge of the aperture. This picture appears

consistent with a geometrical theory of diffraction (Keller,

1962).

6. Conclusions

In summary, we have considered image formation in STEM

using object-conjugate detectors, a geometry that encom-

passes the three-dimensional imaging technique of SCEM and

the recently developed atomic resolution imaging technique of

R-STEM. Image formation in this optical geometry was

considered from the perspectives of wave optics and

geometric optics. For the case of aberration-corrected SCEM,

where the use of an angle-limiting aperture means that aber-

rations other than C1 and A1 can often be ignored, a Wigner

distribution analysis demonstrated that wave and geometric

optics provide equivalent descriptions of the image formation

process, provided that the detector is large enough to average

out the effects of diffraction from the angle-limiting aperture.

In the case of R-STEM, which was the primary focus of this

article, it was shown that a naive application of wave optics can

place excessive demands on computational resources on

account of the dense sampling required to describe the higher-

order postfield aberrations. It was also demonstrated that the

image formation portion of the R-STEM optics can be accu-

rately described by geometric optics, provided that the

detector is large enough to average out ‘diffraction’ caused by

higher-order aberrations. In addition to being computationally

more efficient than wave optics, the resulting geometrical

theory of R-STEM also enables a conceptually simple inter-

pretation in terms of an effective detector operating in the

diffraction plane. Finally, the geometric optics theory of

R-STEM was shown to be in good agreement with experi-

mental images of SrTiO3. Such agreement, in addition to that

reported earlier (Lazar et al., 2011) for images of LaB6,

provides substantial confidence in its validity.
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